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laucoma is a leading cause of

age-related blindness world-

wide, characterized by a pro-

gressive loss of retinal ganglion

cells (RGCs) and their axons.
Could reversing the age of RGCs
restore youthful function that would
rescue vision lost because of glauco-
ma? A recent study sought to answer
this question.”

Although glaucoma is a multifacto-
rial disease for which genetic studies
have identified numerous risk factors,
by far the most significant risk factor
associated with glaucoma is aging.
Surprisingly, experimental evidence
suggesting the possibility of revers-
ing the age of cells has been around
for some time. DNA methylation
pattern changes predictably dur-
ing aging and can therefore be used
to reliably estimate biological age
(known as DNA methylation age).2?
Both somatic cell nuclear transplanta-
tion* and the induction of pluripotent
stem cells® from aged mammalian
cells could reset the DNA methyla-
tion age of the original genome?® and
produce new individuals with normal
lifespans.” However, in both cases,
reprogramming is accompanied by
dedifferentiation and loss of cellular

identity. To reverse the age of cells
within the tissues of a living organism
and keep the cellular identity intact, a
new approach is required.

A NOVEL APPROACH TO EPIGENETIC
REPROGRAMMING

In this new study,’ we employed a
novel form of epigenetic reprogram-
ming to reverse the aging of RGCs.
Unlike a previous in vivo epigenetic
reprogramming study,® our approach
used only three of the four famous
Yamanaka reprogramming factors, Oct4,
Sox2, and Klf4 (OSK). The oncogene
¢-Myc was excluded to avoid tumori-
genesis. In addition, the reprogramming
genes were delivered to RGCs through
adeno-associated virus (AAV), a clini-
cally approved gene therapy cargo,’
and engineered under tight control of
the doxycycline-inducible promoter.
The length of time epigenetic repro-
gramming lasts can be determined by
administering doxycycline to mice via
drinking water. Even when OSK genes
were consistently expressed in RGCs
for 15 months, there was no evidence
of cellular dedifferentiation or retinal
structure alterations.

Mice experience age-related vision
loss similarly to humans. By the time

mice are 12 months old, they have
experienced a significant loss of visual
function, as detected by pattern elec-
troretinogram (pERG) and optomotor
reflex (OMR). When in vivo epigenetic
reprogramming using OSK was induced
in the RGCs of these aging mice, it
significantly increased their vision,

as detected by pERG and OMR. This
change in function coincided with a
reversal of the DNA methylation age
and restoration of a youthful transcrip-
tome and methylome in RGCs, directly
linking the reversal of cellular age

with the restoration of RGC function
and vision.

The power of this technology to
counteract RGC injury was first tested
in an optic nerve crush model, an acute
model of optic nerve injury,’® where
a mechanical crush was introduced
at the optic nerve head, causing the
death of 80% of the RGCs and axons
within 2 weeks. OSK-triggered epigen-
etic reprogramming induced robust
axon regeneration, a capacity that is
lost in mice within days after birth.
Surprisingly, even when reprogramming
was induced after the crush injury had
already occurred, axons were still regen-
erated, an effect that has not yet been
achieved by other interventions.
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Figure. Epigenetic reprogramming in a mouse model of glaucoma. Microbeads / \
were injected into the anterior chamber, resulting in elevated IOP, a loss of RGCS, A

and a loss of visual function (A). Following induction of glaucoma and loss of ~ Microbeads
visual function, mice were treated with an inducible gene therapy consisting of injected into the
anterior chamber

anintravitreal injection of AAV expressing Oct4, Sox2, and KIf4 (0SK) that targets
expression of 0SK specifically to RGCs. Short-term OSK gene expression was
induced for 4 weeks (B). RGCs in young mice have low DNA methylation age that
coincides with a healthy functional transcriptome and provide normal vision. RGCS
in aged or glaucomatous mice have higher DNA methylation age and dysfunctional
transcriptomes, leading to loss of visual function. OSK reprogramming of aged or
glaucomatous RGCs reversed the DNA methylation pattern to a young phenotype,
restoring a healthy transcriptome and normal visual function (C).
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Encouraged by the effect of epi-
genetic reprogramming in the optic
nerve crush injury,’ we next tested
OSK reprogramming using the micro-
bead model of glaucoma in mice."
The injection of microbeads into
the anterior chamber blocks the
aqueous humor outflow pathway,
leading to elevated IOP and a loss of
RGCs and axons by 4 weeks, which
results in a significant reduction in
pERG and OMR. OSK-expressing
AAV was injected around 4 weeks
after the glaucomatous damage
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occurred, and a short term of epi-
genetic reprogramming resulted in
a significant increase in pERG and
OMR, an effect not observed in the
control groups (Figure).

THERAPEUTIC POTENTIAL
FOR GLAUCOMA

Rescue of visual function by a
treatment that is initiated after
glaucomatous damage has occurred
has significant clinical potential.
Our hypothesis is that epigenetic
reprogramming rejuvenates RGCs

that are dysfunctional but not dead
by restoring a youthful transcrip-
tome and methylome that allows
the injured cells to recover from the
injury, something that aged RGCs are
incapable of doing.

There have been numerous approach-
es to treating glaucoma in rodent mod-
els. These include targeting inflamma-
tion,'>"” apoptosis,'?*?' prosurvival, 226
and metabolic pathways.?>?> The major-
ity of these studies initiated treatment
before or during the initial stages of
glaucoma when IOP was increasing but



"EPIGENETIC REPROGRAMMING REJUVENATES RGCS THAT
ARE DYSFUNCTIONAL BUT NOT DEAD BY RESTORING A
YOUTHFUL TRANSCRIPTOME AND METHYLOME THAT
ALLOWS THE INJURED CELLS TO RECOVER ... SOMETHING
THAT AGED RGCS ARE INCAPABLE OF DOING."

no axonal damage or decrease in visual
function had yet occurred. Although
these experiments demonstrated neu-
roprotection that prevented neuronal
damage, their mode of action may limit
their window of efficacy to patients in
earlier stages of the disease.

CONCLUSION

Epigenetic reprogramming is a new
form of gene therapy that can reverse
the age of cells in mice, restoring youth
to their transcriptome and methy-
lome. Importantly, this rejuvenating
effect can allow the retina to recover
functions that were lost with aging,
such as axon regeneration and sensory
perception. OSK-mediated epigenetic
reprogramming appears to hold great
therapeutic potential in humans, not
only for glaucoma but also for a variety
of age-related eye diseases (eg, age-
related macular degeneration) and for
other tissues affected by age-induced
cellular dysfunction.®
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